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1 Desert Research Institute, Water Resources Center, University System of Nevada, Las Vegas,

NV 89132, USA
2 Division of Water Resources Engineering, Royal Institute of Technology, Stockholm, Sweden

(Received 10 December 1996 and in revised form 18 November 1997)

The relative dispersion framework for the non-reactive and reactive solute flux in
aquifers is presented in terms of the first two statistical moments. The solute flux is
described as a space–time process where time refers to the solute flux breakthrough
and space refers to the transverse displacement distribution at the control plane. The
statistics of the solute flux breakthrough and transversal displacement distributions
are derived by analysing the motion of particle pairs. The results indicate that
the relative dispersion formulation approaches the absolute dispersion results on
increasing the source size (e.g. > 10 heterogeneity scales). The solute flux statistics,
when sampling volume is accounted for, show a flattened distribution for the solute
flux variance in the space–time domain. For reactive solutes, the solute flux shows
a tailing phenomenon in time while solute flux variance exhibits bi-modality in
transverse distribution during the recession stage of the solute breakthrough. The
solute flux correlation structure is defined as an integral measure over space and time,
providing a potentially useful tool for sampling design in the subsurface.

1. Introduction
The quality of subsurface waters and strong reliance on its purity for groundwater

supply are important current environmental issues. Hazardous waste storage and
particularly the high-level radioactive waste sites pose a long-term threat to the
integrity of subsurface environments. Potential toxicity of contaminated groundwater
and associated health risks depend directly on contaminant concentrations. Thus our
ability to accurately predict concentration magnitude is critical in risk assessments
and remedial decisions. Although the same can be said for surface waters and the
atmosphere, the peculiarities of geological environments require specific approaches
suitable for studying the contaminant plume dispersion in groundwater flows.

Unlike the surface water and atmosphere, where most flows are turbulent, the sub-
surface flows are for most cases slow (laminar) and steady flows of an incompressible
fluid. The simplified Navier–Stokes equations when applied to such subsurface flows
result in a macroscopic law that can be compared with Darcy’s experimental law
(Matheron 1967). However, the tortuous and unpredictable pathways of groundwater
flows resulting from natural geological heterogeneity yield contaminant concentra-
tions that are random fields, i.e. describable only in a statistical sense. Although
this is similar to random concentrations in surface water, or the atmosphere, the
heterogeneity of the flow is clearly of different origin.

The spreading of contaminants in environmental flows is a major conceptual and
practical challenge. The predictive models are concerned with evaluating the statistical
properties of concentration fields. In atmospheric turbulence the concept of relative
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dispersion was introduced by Richardson (1926) and further elaborated by Batchelor
(1952), Sullivan (1971), and Chatwin & Sullivan (1979). The key features were that
scales of turbulence larger than the cloud size would simply advect the cloud;
scales much smaller would result in a diffusion mechanism, and scales comparable
to the cloud size would distort the cloud in an irregular manner. Complementary
to this theoretical work on relative dispersion, numerical simulation models were
developed and used for predicting the spreading of a single cloud. So called two-
tracer models developed by Thompson (1990), Borgas & Sawford (1994), and Faller
(1996) are based on tracing the motion of particle pairs in turbulent flows. These
models follow a Monte-Carlo approach and they are commonly based on Eulerian
velocity correlations, except the work by Faller (1996) who employed the two-tracer
second-order Lagrangian relations.

Most efforts in studying subsurface contaminant transport have focused on quan-
tifying the expected concentration where the ensemble is a set of realizations
of subsurface aquifers resulting from the geological heterogeneity (e.g. Gelhar &
Axness 1983; Dagan 1984; Rubin 1990; Neuman 1993; Graham & McLaughlin
1989; Cushman & Ginn 1993). This approach yields absolute dispersion which con-
tains random advection of the plume as a whole. More recently, studies have focused
on ’non-ergodic’ transport, i.e. on transport where the plume size is small or compar-
able to the scale of heterogeneity such that plume meandering may be significant. In
particular, the second spatial moment for non-reactive solute has been evaluated by
removing the effect of plume meandering (relative dispersion) (e.g. Kitanidis 1988;
Dagan 1991; Rajaram & Gelhar 1993; Zhang, Zhang & Ling 1996). Using the derived
second spatial moment for relative dispersion, expected relative concentration can be
quantified, for instance, by assuming a Gaussian distribution; this distribution is likely
to be more consistent with an average spatial concentration distribution that would
be observed in a single realization.

A useful representation of transport in aquifers is by the solute flux, defined as
mass of solute per unit time and unit area. The solute flux is related to the flux-
averaged concentration by dividing the former by the groundwater flux (e.g. Kreft
& Zuber 1978; Dagan, Cvetkovic & Shapiro 1992). The flux-averaged concentration
is consistent with common procedures for measuring concentrations in laboratory
columns, in soils, as well as in aquifers (e.g. Kreft & Zuber 1978; Shapiro & Cvetkovic
1988). The solute discharge defined as the flux integrated over a control surface was
considered as a prime quantity of interest in a number of studies (e.g. Cvetkovic &
Shapiro 1990; Dagan & Nguyen 1989; Cvetkovic, Dagan & Shapiro 1992; Destouni
& Graham 1995; Andričević & Cvetković 1996; Selroos 1997a, b). Current regulatory
standards for the subsurface environment, especially those set in terms of travel time,
make the solute flux approach an appealing framework for predicting subsurface
contaminant transport. To describe the absolute dispersion of solute discharge, the
probability density function (p.d.f.) of particle travel time from a fixed origin is
required. The second temporal moment for reactive and non-reactive solute where
the effect of plume meandering is removed (relative dispersion) was investigated by
Selroos (1995). Similarly to the results for concentration, the second temporal moment
can be used to parameterize a travel time distribution which quantifies the relative
solute discharge.

For most applications, the mean description of transport (in the form of concen-
tration or mass flux) is insufficient. The requirement is a statistical description of the
concentration, or the mass flux, as a function of space and time such that both trends
and fluctuations are quantified. For all practical purposes this implies quantifying
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the first two moments (mean and variance) and assuming a distribution that can be
used say in risk and safety assessment (Andričević & Cvetković 1996). Groundwater
velocity variations on a scale larger than the plume size (‘plume meandering’) gener-
ally influence the entire statistics of solute concentration, or mass flux. It is therefore
important to evaluate in a relative sense not only the mean concentration or mass
flux, but also the variance.

In this paper a theoretical framework for relative dispersion is proposed in terms
of the solute mass flux, defined as mass per unit time and unit area through a control
plane. The solute flux depends on the distribution of the transverse displacements
and on solute travel time evaluated at a fixed control plane. The mean solute flux
and solute flux standard deviation will be derived using the Lagrangian framework
in a relative sense, i.e. the origin of coordinates will be at the centre of mass of the
solute plume throughout each realization of the geologic media. The kinematics of a
particle pair and two particle pairs will be used to evaluate the statistics required for
describing the first two moments of the solute flux. The issue of common sampling
practice in the subsurface and degree of averaging introduced during collection of
measurements is directly incorporated in the solution and its effect analysed.

In § 3, the Lagrangian transport formulation is outlined and solute mass flux
defined. Section 4 formulates the solute flux statistics and correlation structure using
the relative dispersion formulation. In § 5 the case of uniform source distribution is
presented. First-order results for the one and two particle-pair statistical moments are
given in § 6. Section 7 is devoted to the presentation of illustrative examples for both
reactive and non-reactive solute transport.

2. Problem description
We consider incompressible groundwater flow that takes place through a hetero-

geneous aquifer of spatially variable hydraulic conductivity K(x), where x(x, y, z) is
a Cartesian coordinate vector. Groundwater seepage velocity V (x) satisfies the con-
tinuity equation, ∇ · (nV ) = 0, and is related to the hydraulic conductivity and to
the hydraulic head Φ through Darcy’s law V = −(K/n)∇Φ, where n is the effective
porosity. Furthermore, we assume that a mean (macroscopic, or field-scale) drift can
be identified for the groundwater flow.

The heterogeneous flow implies irregular streamlines which in an average sense
are parallel to the mean groundwater flow direction (figure 1a). We consider in this
study a time-independent and statistically stationary V (Vx, Vy, Vz). Without loss of
generality, the mean flow is taken in the direction x, i.e. U (U, 0, 0) where U ≡ 〈V 〉
and angular brackets denote ensemble averaging. The mean and covariance function
of V are considered known, having been derived from the continuity equation and
Darcy’s law using the first-order approximation (e.g. Rubin & Dagan 1992).

At time t = 0, a solute of total mass M is released into the flow field over the
injection area A0 located at x = 0, either instantaneously or with a known release rate
quantified by a rate function, φ(t) [T−1]. We denote with ρ0(a)[M/L2] an areal density
of injected solute mass at the location a ∈ A0. With ∆a denoting an elementary area
at a, the particle of mass ρ0∆a is advected by the random groundwater velocity field,
V . The total advected solute mass is M =

∫
A0
ρ0da. If the solute mass is uniformly

distributed over A0, then ρ0 = M/A0 = const.
For t > 0 a solute plume is formed and advected downstream by the flow field,

toward a (y, z)-plane, oriented normal to the flow and located at some distance from
the source, through which the solute mass flux is to be predicted or measured; it is
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Figure 1. Problem configuration and solute flux breakthrough ensemble averaging: (a) problem
configuration, (b) absolute dispersion and (c) relative dispersion.
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Figure 2. Definition sketch of particle displacement in (a) fixed frame of reference and
(b) relative coordinates, for ρ0 = const.

referred to as the control plane (CP) (figures 1a and 2). Owing to velocity fluctuations
on a scale equal to and smaller than the plume size, the plume is diffused and
distorted in an irregular manner (figure 1a). Velocity fluctuation on a scale larger
than the plume size cause the plume to ‘meander’ relative to the mean flow direction.

For a qualitative description of transport, consider first the breakthrough of the
solute plume across the entire control plane [MT−1]. Figures 1(b) and 1(c) schemat-
ically show the difference between absolute and relative dispersion. The ensemble
average for absolute dispersion accounts for both meandering and sub-plume velocity
fluctuations; hence the dispersion is largest (figure 1b). Owing to relatively strong ge-
ological heterogeneity, the temporal distribution of mass arrival (breakthrough) may
differ significantly from realization to realization yielding the ensemble average from
the fixed origin being quite different from any realization of the solute breakthrough
(figure 1b). By comparison, the effect of meandering is removed from ensemble av-
erages for relative dispersion, such that the spreading is generally smaller, and more
consistent with the breakthrough in individual realizations (figure 1c). The expected
breakthrough for relative dispersion is obtained from plume realizations where the
mean arrival times are set to coincide (figure 1c).

Next, consider the transverse position of the plume as it crosses the control
plane. Figure 2 shows displacement trajectories of particles advected from the source,
described in absolute coordinates (figure 2a) and coordinates relative to the mean
transverse displacement (figure 2b).

The main objective of the present study is to derive the statistical moments (mean
and variance) of the solute flux in relative coordinates. In contrast to the absolute
dispersion which concentrates on a single particle, relative dispersion relates to par-
ticle pairs. Thus, we require the first two moments of travel time and transverse
displacement probability density functions (p.d.f.s) based on the statistics of motion
of particle pairs. In order to evaluate the solute flux variance, the joint p.d.f. between
two particle pairs will be used. A particular problem to be addressed in the present
study is how to define and compute a global measure of plume statistical structure in
space and time, in analogy to the distance–neighbour function of Richardson (1926).



150 R. Andričević and V. Cvetković

3. Lagrangian transport formulation
3.1. Kinematical relationships

Traditional description of advective transport is by the trajectory X = X (t; a) where
X (0; a) = a is the point of injection at t = 0 (Taylor 1921). The statistics of
X (Xx,Xy, Xz) can be approximately related to the statistics of the groundwater
velocity field, V (x), as well as to the statistics of the hydraulic conductivity (e.g.
Dagan 1984).

In our following analysis we quantify advective transport by the Lagrangian space–
time process (τ, η), rather than the space process X (e.g. Dagan et al. 1992; Cvetkovic
& Dagan 1994). τ(x; a) is a time process and quantifies the travel (arrival) time of
the advective particle from the origin, a(0, ay, az), to a control plane (CP) at x. We
assume the solute parcel moves in the direction of the mean flow and τ is positive
and finite. η(η, ζ) is a space process that quantifies the transverse displacement, where
η(0; a) = a (figure 2).

The travel time τ can be obtained formally as τ(x; a) = X−1
x (x; a), or explicitly as

τ(x; a) =

∫ x

0

dξ

Vx(ξ, η, ζ)
. (1)

The components of the transverse vector can be evaluated from Xy and Xz as

η(x; a) = Xy[τ(x; a); a], ζ(x; a) = Xz[τ(x; a); a], (2)

or from the velocity field explicitly as

η(x; a) =

∫ x

0

Vy(ξ, η, ζ)

Vx(ξ, η, ζ)
dξ, ζ(x; a) =

∫ x

0

Vz(ξ, η, ζ)

Vx(ξ, η, ζ)
dξ. (3)

Equations (1)–(3) provide the basic random variables for a single advecting solute
particle.

The basic random variables that quantify the advection of the plume as a whole
are the areally averaged travel time and transverse displacement defined as

T (x;A0) ≡
1

A0

∫
A0

τ(x; a) da, (4)

Y (x;A0) ≡
1

A0

∫
A0

η(x; a) da, (5)

T (x;A0) and Y (x;A0)[Y (x;A0), Z(x;A0)] represent the mean travel time and mean
transverse displacement for the entire plume crossing the CP. We emphasize the
dependence of T and Y on the source size and the source shape, for notational
simplicity denoted by A0. Both T (4) and Y (5) are defined as kinematical quantities;
only in the case of ρ0(a) = const., do T and Y also represent the travel time and
transverse displacement of the centre of mass of the plume.

The basic random variables for describing the state of relative dispersion of a plume
of particles advected by a random velocity field, V (x), are

θ(x; a, A0) ≡ τ(x; a)− T (x;A0) =
1

A0

∫
A0

∆τ(x; a, a′)da′,

ϑ(x; a, A0) ≡ η(x; a)− Y (x;A0) =
1

A0

∫
A0

∆η(x; a, a′)da′,

 (6)

with ϑ(ϑ, χ); θ and ϑ quantify fluctuations of the particle transport variables τ and η
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from the plume transport variables T and Y . In (6),

∆τ(x; a, a′) ≡ τ(x; a)− τ(x; a′), ∆η(x; a, a′) ≡ η(x; a)− η(x; a′) (7)

represent a travel time difference and transverse separation at the CP for a particle
pair.

3.2. Solute mass flux and discharge

General mass balance equations for solute undergoing mass transfer reactions are

∂C

∂t
+ V · ∇C = ψm(C,N),

∂N

∂t
= ψim(C,N), (8)

where we consider advection only, and where the fluid mass balance equation has
been used. In (8), C is the mobile and N the immobile solute concentration, with
the corresponding sink/source terms denoted as ψm and ψim. In the following we
restrict our discussion to linear mass transfer reactions. Cvetkovic & Dagan (1994)
showed how solute advection along random trajectories can be coupled with the linear
reactions yielding the solution in terms of a time retention function γ(t, τ), which is
available in analytical forms for a wide range of linear solute mass transfer processes.
Note that for nonlinear reactions the retention function would depend on the initial
and/or boundary concentration (e.g. Dagan & Cvetkovic 1996; Cvetkovic & Dagan
1996).

In aquifers, the migrating solute is detected from a single or an array of drilled
wells (boreholes). The corresponding sampling area is denoted by A and its value
will depend on the sampling method used. Thus we seek to predict the statistical
properties of the solute flux averaged over A. Integrating the solute flux for a single
particle, ∆q ≡ ρ0(a) daΓ (t, τ) δ(y − η), over the injection area A0, averaging over
the sampling area A(y) centred at y(y, z) within the CP, yields the solute mass flux
component orthogonal to the CP at x as

q(t, y; x, A) =
1

A

∫
A0

∫
A

ρ0(a)Γ (t, τ)δ(y′ − η)dy′da, (9)

where

Γ (t, τ) ≡
∫ t

0

φ(t− t′)γ(t′, τ)dt′ (10)

and φ(t)[T−1] is the injection rate. The time retention function γ(t, τ) is the solution
for a solute pulse of the advection–reaction system (8), transformed onto an advection
flow path (Cvetkovic & Dagan 1994). For instantaneous release, φ ≡ δ(t); for non-
reactive solute γ ≡ δ(t−τ). For instantaneous release of non-reactive solute (10) yields
Γ = δ(t− τ). Note that the concentration C obtained from (8) and the solute flux for
a single particle, ∆q, are related as ∆q = CVx(x, η, ζ).

The dependence of q on A emphasizes that the solute flux is averaged (or upscaled)
over A and, hence, its statistics depend on the sampling area A. Note that in following
expressions, dependence of the sampling area, A, on y is understood and will not be
stated explicitly. From the solute mass flux we define the solute discharge over the
sampling area A, Q [MT−1], as

Q(t, y; x, A) = q(t, y; x, A) A, (11)

where Q(t, y; x, A) quantifies the solute mass crossing A centred at y at time t. Statistics
of Q are readily obtained from statistics of q using (11).
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4. Solute flux statistics
During any particular realization of a hypothetical experiment, the particle travel

time and transverse locations [τ(x; a), η(x; a)], will vary in a random manner due to
the fluctuations in V (x) on all scales. The plume travel time and transverse locations
[T (x;A0),Y (x;A0)], will vary in an irregular manner resulting from the velocity
fluctuations on the scale larger than the plume size; these variations would decrease
as the plume size increases. The random quantities [θ(x; a, A0), ϑ(x; a, A0)] vary in a
random manner due to velocity fluctuations on a scale smaller than the plume size.
In this section we wish to compute the relative first two moments of solute flux using
the statistics of [θ(x;A0, a), ϑ(x;A0, a)], and [T (x;A0),Y (x;A0)].

4.1. Probabilistic model of relative dispersion

The basic probability density functions (p.d.f.s) for describing the transport of a solute
plume are

f1(τ− T , η − Y , T ,Y ; x, A0, a)≡ f1(θ, ϑ, T ,Y ; x, A0, a),

f2(τ− T , τ′ − T , η − Y , η′ − Y , T ,Y ; x, A0, a, b)≡ f2(θ, θ
′, ϑ, ϑ′, T ,Y ; x, A0, a, b).

}
(12)

The p.d.f.s f1 and f2 are functions of the location of the CP, x, of the size and shape
of the source area, indicated by A0, and of the particle initial position a. The subscript
1 in (12) indicates that the p.d.f. f1 is based on the statistics of one particle, whereas
the subscript 2 indicates that f2 moments are computed from two particles located at
a and b. In (12), τ = τ(x; a), η = η(x; a) and τ′ = τ(x; b), η′ = η′(x; b).

Following the definitions of θ = τ− T and ϑ = η − Y , the basic p.d.f.s describing
particle transport in an absolute sense are obtained from (12) as

f1(τ, η; x, A0, a) =

∫ ∞
0

∫ ∞
0

f1(θ, ϑ, T ,Y ; x, A0, a) dT dY ,

f2(τ, τ
′, η, η′; x, A0, a, b) =

∫ ∞
0

∫ ∞
0

f2(θ, θ
′, ϑ, ϑ′, T ,Y ; x, A0, a, b) dT dY ,

 (13)

Using the theorem on conditional probabilities, (13) can alternatively be written as

f1(τ, η; x, A0, a) =

∫ ∞
0

∫ ∞
0

f1(θ, ϑ | T ,Y ; x, A0, a)f(T ,Y ) dT dY ,

f2(τ, τ
′, η, η′; x, A0, a, b) =

∫ ∞
0

∫ ∞
0

f2(θ, θ
′, ϑ, ϑ′ | T ,Y ; x, A0, a, b) f(T ,Y ) dT dY ,

 (14)

where f1(· | T ,Y ) and f2(· | T ,Y ) are conditional p.d.f.s, and f(T ,Y ) quantifies plume
meandering within the ensemble.

The advection of a plume as a whole is statistically described by the p.d.f.
f(T ,Y ; x, A0), which provides information on the degree of uncertainty in the plume
position and arrival at the CP. This p.d.f. may be useful for designing the total
monitoring network size in the vicinity of potential source areas (e.g. landfills or
waste repositories). In addition, f(T ,Y ; x, A0) is the reducible uncertainty through
measurement conditioning. Collecting measurements at fixed locations or sequentially
in stages can be used to condition f(T ,Y ; x, A0) and ultimately reduce the uncertainty
in predicting the migration of a plume as a whole.

Our main focus here is to study the effect of sub-plume velocity fluctuations on the
mean and variance of the reactive solute mass flux at the CP at x. By setting in (14)

f(T ,Y ) = δ(T − 〈τ〉) δ(Y − a0), (15)
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where δ denotes the Dirac delta function, we eliminate plume meandering, i.e. we
eliminate effects of V fluctuations on a scale larger than the plume size; a0(a0x =
0, a0y , a0z ) is the centroid of A0.

Substituting (15) into (14), we obtain

fr1(τ, η; x, A0, a)≡
∫ ∞

0

∫ ∞
0

f1(θ, ϑ | T ,Y ; x, A0, a)δ(T − 〈τ〉) δ(Y − a0) dT dY

= f1(τ− 〈τ〉, η − a0 | 〈τ〉, a0; x, A0, a),

fr2(τ, τ
′, η, η′; x, A0, a, b)≡

∫ ∞
0

∫ ∞
0

f2(θ, θ
′, ϑ, ϑ′ | T ,Y ; x, A0, a, b)

×δ(T − 〈τ〉) δ(Y − a0) dT dY

= f2(τ− 〈τ〉, τ′ − 〈τ〉, η − a0, η
′ − a0 | 〈τ〉, a0; x, A0, a, b),


(16)

where we denote with a superscript r the p.d.f.s that specifically quantify relative
dispersion. The p.d.f.s fr1 and fr2 can in principle be constructed by performing a large
number of plume realizations (forming an ensemble), superimposing mean arrival
times and displacements at the ensemble mean (〈τ〉, a0) and then evaluating one- and
two-particle advective transport statistics (see figure 1c).

4.2. Mean and variance

Taking the expected value of q (9) with fr1 (16) we obtain

〈q(t, x)〉 =
1

A

∫
A0

∫
A

∫ ∞
0

ρ0(a)Γ (t, τ)fr1(τ, y
′; x, a) dτ dy′ da. (17)

For simplicity, we omit hereafter explicit dependence on A0 and A which is to be
understood. For a non-reactive solute pulse, with sampling over a point (i.e. A→ 0),
we get

〈q(t, x)〉 =

∫
A0

ρ0(a) f
r
1(t, y; x, a) da. (18)

The variance of the solute flux is evaluated as

σ2
q(t, x) ≡

〈
q2
〉
− 〈q〉2 , (19)

where 〈
q2(t, x)

〉
=

1

A2

∫
A0

∫
A0

ρ0(a)ρ0(b)F(t, y; x, a, b) da db (20)

and

F ≡
∫
A

∫
A

∫ ∞
0

∫ ∞
0

Γ (t, τ)Γ (t, τ′)fr2(τ, τ
′, y′, y′′; x, a, b) dτ dτ′ dy′ dy′′.

For a non-reactive solute pulse with sampling over a point (i.e. A→ 0), we have〈
q2(t, x)

〉
=

∫
A0

∫
A0

ρ0(a) ρ0(b) f
r
2(t, t, y, y; x, a, b) da db. (21)

The above expressions for 〈q〉 and σ2
q for reactive and non-reactive solute are

analogous in form to the expressions in the absolute dispersion formulation, where fr1
and fr2 are substituted by the corresponding p.d.f.s f1 and f2 (e.g. Dagan et al. 1992;
Cvetkovic et al. 1992; Andricevic & Cvetkovic 1996).
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4.3. Correlation structure

The correlation structure of the solute flux, or discharge, represents a statistical
function of potential interest in several applications, such as monitoring network
design, measurement conditioning, remediation design, etc. It describes the correlation
between two solute particles at different locations in space–time coordinates observed
at the CP. Since q and consequently Q are not stationary random functions, we write
the covariance between two points in space and time as

〈q(t1, y1; x)q(t2, y2; x)〉

where the dependence is on t1, y1 and t2, y2, i.e. on six variables.
Generally it is not possible to use techniques developed for stationary random

functions to evaluate the above expression. However, we define the integral form of
the above statistical function as

P (t∗, y∗; x) ≡
∫ ∫

〈q(t, y; x)q(t+ t∗, y + y∗; x)〉 dt dy
/∫ ∫

σ2
q(t, y; x) dt dy, (22)

where integration is over all time and over the entire control plane at x. The above
integral correlation measure depends only on three variables in the three-dimensional
case: the temporal lag t∗ and the two components of the transverse lag vector y∗.
Furthermore, P (t∗, y∗; x) is quadrant symmetric (which implies statistical homogeneity
in a weak sense, see e.g. Vanmarcke 1983) and is analogous to the distance–neighbour
function of Richardson (1926). For the solute flux it behaves like a correlation
function. A similar finding for the transverse spreading was reported by Chatwin &
Sullivan (1979) in turbulent diffusion experiments at Lake Huron.

The solute flux correlation measure in (22) is a measure of solute flux structure
throughout the plume with all parts being given the same weight. For a given temporal
lag t∗ and spatial lag y∗, (22) represents the effective correlation measure at x for the
entire plume. This correlation measure is based on the relative dispersion solution and
provides the actual measure of correlation between two points in a single realization.
For example, the correlation scale in the transverse direction can be used as a guideline
for transverse spacing between sampling wells at CP and the correlation scale in time
can be used as a guideline for sampling frequency of measurements.

4.4. One- and two-particle moments

In the following, we compute the first few moments of the basic p.d.f.s f1(θ, ϑ, T ,Y ; x, a)
and f2(θ, θ

′, ϑ, ϑ′, T ,Y ; x, a, b).
The first moments of f1 are computed as

〈θ(x; a)〉= 1

A0

∫
A0

〈∆τ(x; a, a′)〉 da′ = 0,

〈ϑ(x; a)〉= 1

A0

∫
A0

〈∆η(x; a, a′)〉 da′ = a− a0,

〈T (x)〉= 1

A0

∫
A0

〈τ(x; a′)〉 da′ = 〈τ(x)〉,

〈Y (x)〉= 1

A0

∫
A0

〈η(x; a′)〉 da′ = a0,


(23)

where a0(a0x = 0, a0y , a0z ) is the centroid of A0.
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The second moment 〈θ2〉 is computed as〈
θ2(x; a, A0)

〉
= σ2

τ (x) + σ2
T (x;A0)− 2 στT (x;A0, a). (24)

In (24), σ2
τ (x) ≡ 〈τ2〉 − 〈τ〉2, and σ2

T (x;A0) is the second moment of the variability in
the plume mean travel time (Selroos 1995)

σ2
T ≡ 〈T 2〉 − 〈τ〉2 =

1

A2
0

∫
A0

∫
A0

σττ′(x; a, a′) da da′, (25)

while στT is the joint moment between T and τ:

στT ≡ 〈τT 〉 − 〈τ〉2 =
1

A 0

∫
A0

σττ′(x; a, a′) da′ (26)

where σττ′(x; a, b) ≡ 〈τ(x; a)τ(x; b)〉 − 〈τ〉2 (Cvetkovic et al. 1992).
The joint moment 〈θT 〉 is computed as

〈θT 〉 = στT (x; a)− σ2
T (x). (27)

The corresponding moments for transverse displacement follow from〈
ϑ2
〉

= σ2
η(x) + σ2

Y (x;A0)− 2 σηY (x; a, A0),〈
χ2
〉

= σ2
ζ (x) + σ2

Z (x;A0)− 2 σζZ (x; a, A0),

〈ϑY 〉= σηY (x; a, A0)− σ2
Y (x;A0),

〈χZ〉= σζZ (x; a, A0)− σ2
Z (x;A0),

 (28)

where σ2
η(x) and σ2

ζ (x) are transverse displacement variances for a single particle,

σ2
Y (x;A0) and σ2

Z (x;A0) denote variances of the plume mean transverse location at
the CP and are computed in analogy to (25), and σηY (x;A0, a) and σζZ (x;A0, a) are
defined and computed in analogy to στT (26). In (24) and (28) we emphasize the
dependence on A0 since σ2

τ , σ
2
η and σ2

ζ are not dependent on A0.
The joint moments between θ, T and ϑ,Y are all functions of the joint moment

between travel time and transverse displacement στη ≡ 〈τη〉 − 〈τ〉〈η〉. It can be shown
under fairly general conditions that for statistically stationary flow στη = 0 (Dagan et
al. 1992; G. Dagan, unpublished manuscript).

The joint moments between two particles at a and b are computed as

〈θθ′〉 ≡ 〈θ(x; a) θ(x; b)〉 = σττ′(x; a, b) + σ2
T (x;A0)− στT (x;A0, a)− στT (x;A0, b). (29)

Similarly the cross-covariance terms for the transverse displacement follow from

〈ϑϑ′〉 ≡ 〈ϑ(x; a) ϑ(x; b)〉 = σηη′(x; a, b)+σ2
Y (x;A0)− σηY (x;A0, a)− σηY (x;A0, b), (30)

〈χχ′〉 ≡ 〈χ(x; a) χ(x; b)〉 = σζζ ′(x; a, b) + σ2
Z (x;A0)− σζZ (x;A0, a)− σζZ (x;A0, b). (31)

The moments for fr1 and fr2 can be obtained via the Monte-Carlo method by
generating a large number of realizations of a plume of particles and statistically
evaluating their arrival time and transverse displacement at the CP. An alternative
approach is to derive analytical solutions using first-order approximations; these
approximations will be presented in § 5.
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5. Uniform source distribution
We consider here the special case of a reactive solute that is uniformly distributed

over the source area, A0, i.e. ρ0 = M/A0 = const., where M is the total injected
solute mass. In this case, computations of the relative solute flux statistics simplify
considerably; these results will be illustrated in § 7.

5.1. Mean and variance of solute flux

The expected absolute solute flux (17) is written using (13) as

〈q(t, x)〉 =
M

A

∫
A

∫ ∞
0

Γ (t, τ)f1(τ, y
′) dτ dy′

=
M

A

∫
A

∫ ∞
0

∫ ∫
Γ (t, τ)f1(τ− T , y′ − Y , T ,Y ; x) dT dY dτ dy′, (32)

where

f1(θ, ϑ, T ,Y ) =
1

A 0

∫
A0

f1(θ, ϑ, T ,Y ; a) da. (33)

The moments of f1(θ, ϑ, T ,Y ) (33) can be inspected using the result given in the
Appendix; we find that all the joint moments between θ, ϑ, χ and T , Y , Z are zero,
following the definitions of θ, ϑ, χ (6), i.e.

1

A0

∫
A0

〈θ T 〉 da =
1

A0

∫
A0

〈ϑY 〉 da =
1

A0

∫
A0

〈ϑZ〉 da =
1

A0

∫
A0

〈χZ〉 da = . . . = 0. (34)

Hence we can write

f1(θ, ϑ, T ,Y ) = f1(θ, ϑ)f(T ,Y ), (35)

which is a statement of independence; f1(θ, ϑ) is a joint p.d.f. for the relative travel
time and transverse displacements with f1(θ, ϑ, T ,Y ) defined in (33).

Using (35), the p.d.f. f1(τ, η) can be written

f1(τ, η; x) =

∫ ∞
0

∫ ∞
0

f1(τ− T , η − Y ) f(T ,Y ) dT dY , (36)

which is a convolution transform of distribution functions with the property that the
first and second moments of f1(τ, η) are equal to the summation of corresponding
first and second moments of f1(θ, ϑ) and f(T ,Y ) (e.g. Gifford 1959; Hirshman &
Widder 1955). Since the unconditional p.d.f. f1(θ, ϑ) (35) is identical to a conditional
p.d.f. f1(θ, ϑ | T ,Y ) in view of independence (34), it follows that (36) is a special case
of (14).

To remove the plume meandering, we substitute (15) into (36) and obtain the p.d.f.
for τ and η for relative dispersion which has been averaged over A0:

fr1(τ, η; x) ≡ f1(τ− 〈τ〉, η − a0; x, A0). (37)

The mean solute flux is obtained by averaging q (9) using fr1 (37):

〈q(t, x)〉 =
M

A

∫ ∞
0

Γ (t, τ)fr1(τ) dτ

∫
A

fr1(y
′) dy′, (38)

where we have also taken advantage of the statistical independence of τ and η.
The variance of the solute flux is evaluated as

σ2
q(t, x) ≡

〈
q2
〉
− 〈q〉2 , (39)
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where 〈
q2(t, x)

〉
=

(
M

A0 A

)2 ∫
A0

∫
A0

F(t, y; x, α) da db (40)

and

F ≡
∫ ∞

0

∫ ∞
0

Γ (t, τ)Γ (t, τ′)fr2(τ, τ
′; x, α) dτ dτ′

∫
A

∫
A

fr2(y, y
′; x, α) dy′ dy′′.

In (40), α = a− b, i.e. the dependence of the joint moments of fr2 is on the separation,
rather than absolute positions a and b, in view of statistical stationarity.

The description of relative dispersion for a solute plume requires knowledge of the
p.d.f.s fr1 and fr2, or an infinite number of statistical moments. Our approach to this
Lagrangian closure problem is to evaluate a finite number of statistical moments and
assume certain shapes for fr1 and fr2.

5.2. One- and two-particle-pair moments

In the following, we wish to compute the first few moments of the p.d.f.s fr1(τ) and
fr2(τ, τ

′; α), and fr1(η) and fr2(η, η
′; α) which will be used for evaluating the mean and

variance of the relative solute mass flux.
The first moment of fr1(τ) is 〈τ〉, and of fr1(η) is a0. The second moment of fr1(τ) is

denoted by Σ2
θ and is evaluated as

Σ2
θ (x;A0) ≡

1

A0

∫
A0

〈
θ2(x; a)

〉
da =

1

2

∫
A0

∫
A0

〈[∆τ(x; a, a′)]2〉 da da′

= σ2
τ (x)− σ2

T (x;A0). (41)

The factor 1/2 in (41) results from the ‘two particle’ theorem which can be stated
as that the mean-square separation of two dispersing particles is just twice their
mean-square distance from the centre of mass (e.g. Batchelor 1952; Csanady 1973;
Fischer et al. 1979). Equation (41) was derived earlier by Selroos (1995), whereas the
corresponding expression for spatial moments in aquifers was derived by Kitanidis
(1988) and Dagan (1989).

Second moments for transverse displacement p.d.f.s fr1(η) and fr1(ζ) follow respec-
tively from

Σ2
ϑ(x) ≡ 1

A0

∫
A0

〈
ϑ2(x; a)

〉
da

=
1

2

∫
A0

∫
A0

〈[∆η]2〉 da da′ = σ2
ϑ(0;A0) + σ2

η(x)− σ2
Y (x;A0), (42)

Σ2
χ (x) =

1

A0

∫
A0

〈
χ2(x; a)

〉
da

=
1

2

∫
A0

∫
A0

〈[∆ζ]2〉 da da′ = σ2
χ(0;A0) + σ2

ζ (x)− σ2
Z (x;A0), (43)

where σ2
ϑ(0;A0) and σ2

χ(0;A0) denote the initial variances in transverse directions due
to the finite source size.

Next, we wish to compute the moments of the joint p.d.f.s fr2. The first and second
moment of fr2(τ, τ

′; α) are 〈τ〉 and Σ2
θ , and of fr2(η, η

′; α) are a0 and Σ2
ϑ . The joint

moments are denoted by Σθθ′(x; α), Σϑϑ′(x; α), and Σχχ′(x; α).
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The joint moment for travel time, Σθθ′(x; α), consistent with Σ2
θ (x) is obtained by

averaging the travel time cross-covariance between two particle–pairs over A0. Note
that the dependence on α(αy, αz) implies the dependence on absolute values of the
components, i.e. αy = |ay − by| and αz = |az − bz|.

In particular, Σθθ′(x; α) is defined as the cross-covariance between ∆τ(x; a, a′) and
∆τ′(x; b, b′) integrated over separations between two particle–pairs within A0:

Σθθ′(x; α) =
1

2

1

A2
0

∫
A0

∫
A0

〈
∆τ(x; a, a′) ∆τ(x; b, b′)

〉
d(a− a′)d(b− b′). (44)

Similarly the cross-covariance terms for the transverse displacement follow from

Σϑϑ′(x; α) =
1

2

1

A2
0

∫
A0

∫
A0

〈
∆η(x; a, a′) ∆η(x; b, b′)

〉
d(a− a′)d(b− b′),

Σχχ′(x; α) =
1

2

1

A2
0

∫
A0

∫
A0

〈
∆ζ(x; a, a′) ∆ζ(x; b, b′)

〉
d(a− a′)d(b− b′).

 (45)

The above expressions can be further developed by substituting (7) into (44) and
(45), and considering two particle–pairs at (a, a′) and (b, b′). Setting the particle-pair
separations to be parallel and of equal magnitude, where α = a− b = a′ − b′ denotes
the separation between the two pairs, and β = a − a′ = b − b′ the separation within
each pair, the integrated cross-covariance, for instance, for the travel time can be
written as

Σθθ′(x; α) = 1
2
σττ′(x; a− b) + 1

2
σττ′(x; a′ − b′)

−1

2

1

A2
0

∫
A0

∫
A0

σττ′(x; a− b′) d(a− a′)d(b− b′)

−1

2

1

A2
0

∫
A0

∫
A0

σττ′(x; b− a′) d(a− a′)d(b− b′)

= σττ′(x; α)− 1

2

1

A2
0

∫
A0

∫
A0

σττ′(x; α+ β) d(a− a′)d(b− b′)

−1

2

1

A2
0

∫
A0

∫
A0

σττ′(x; α− β) d(a− a′)d(b− b′). (46)

Again, the dependence on vectors implies dependence on absolute values of compo-
nents, for instance, b−a′ on |by−a′y| and |bz−a′z|, α+β on |αy+βy| = |ay−by+ay−a′y|
and |αz +βz| = |az−bz +az−a′z|, etc. The double integration over A0 can be simplified
to a single integration over the separation β within A0. In § 5, expressions for Σθθ′ ,
Σϑϑ′ and Σχχ′ will be fully developed for a square planar source where these simpli-
fications will be apparent. For zero separation between the particle–pairs, we obtain
the required relationship

Σθθ′(x;A0, αy = 0, αz = 0) = Σ2
θ (x;A0) = σ2

τ (x)− σ2
T (x;A0). (47)

Expressions similar to (46) and (47) can be written for transverse cross-covariances.

5.3. Bulk measure of solute flux

If non-reactive solute is released as a pulse, Γ (t, τ) = δ(t− τ), and sampling is over a
point (i.e. A→ 0), then (17) becomes

〈q(t, x)〉 = M fr1(t, y; x) (48)
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i.e. the solute mass flux is proportional to fr1. The outstanding feature for solute
flux advective transport is the average temporal length of a plume (spreading of
breakthrough) and transverse width of a plume. For non-reactive solute, a single
measure of this temporal length and transverse width is `θ(x;A0) and `ϑ(x;A0),
respectively, where

`θ(x;A0)≡
{

1

M

∫
(t− 〈τ〉)2 〈q〉 dt

}1/2

=

{∫
t2 fr1(t; x, A0) dt

}1/2

= Σθ,

`ϑ(x;A0)≡
{

1

M

∫
(y − a0)

2 〈q〉 dy
}1/2

=

{∫
y2 fr1(y; x, A0) dy

}1/2

= Σϑ

 (49)

and `ϑ = [`η, `ζ]. As a consequence of mass conservation, the magnitude of the mean
non-reactive solute flux is of the order (M/`θ`η`ζ) for the bulk of the plume at the
CP.

6. First-order results
The hydraulic conductivity, K , is assumed to be a statistically stationary random

space function, log-normally distributed, i.e. K = Kg exp(k), where k : N(0, σ2
k ), Kg is

the geometric mean, σ2
k is the log-hydraulic conductivity variance, and k is spatially

correlated following a negative exponential function with the integral scale I . The
resulting velocity field in the aquifer, V (x), is also a statistically stationary random
space function assumed to be steady with the mean hydraulic gradient parallel to
the x-coordinate axis. The injection plane set at the origin, x = 0, is assumed for
simplicity as a square, A0 = H ×H . In the following, we focus on computing Σ2

θ , Σ
2
ϑ ,

Σθθ′ and Σϑϑ′ which will be used for illustration of results.

6.1. Computation of Σ2
θ and Σ2

ϑ

To evaluate the second moments required for relative p.d.f. fr1, we employ the first-
order approximation in the velocity field which is based on the assumption that the
streamlines do not deviate significantly from the mean fluid direction (e.g. Dagan
1984; Dagan et al. 1992). Expanding (1) and (3) we get at first-order

τ(x; a) =

∫ x

0

[
1

U
− ux(ξ, ay, az)

U2

]
dξ, (50)

η(x; a) =

∫ x

0

uy(ξ, ay, az)

U
dξ, (51)

ζ(x; a) =

∫ x

0

uz(ξ, ay, az)

U
dξ, (52)

where ui(x, ay, az) is the velocity fluctuation in the i-direction, and the first-order
approximation of the expansion (1 + ux/U)−1 is used, i.e. (1 + ux/U)−1 ≈ (1− ux/U).
Thus, the travel time difference between two particles follows from

∆τ(x; a, a′) =
1

U2

∫ x

0

ux(ξ, a
′
y, a
′
z) dξ − 1

U2

∫ x

0

ux(ξ, ay, az) dξ. (53)

The second moment for the relative travel time of a plume of particles, for a planar
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source of size A0 = H ×H , follows from (24):

Σ2
θ (x;H) =

1

2

1

A2
0

∫
A0

∫
A0

〈
[∆τ(x; a, a′)]2

〉
da da′ = σ2

τ (x)− σ2
T (x;H)

=
2

U2

∫ x

0

(x− ξ)Cux(ξ, 0, 0)dξ

− 8

H4U2

∫ H

0

∫ H

0

∫ x

0

(H − αy)(H − αz)(x− ξ)Cux(ξ, αy, αz)dξ dαy dαz, (54)

where αy ≡ |ay−a′y|, αz ≡ |az−a′z|, and Cux is the covariance function of the normalized
fluid velocity ux/U, available in a closed form (e.g. Rubin & Dagan 1992).

Similarly for transverse displacements, the separation between two particles follows
from

∆η(x; a, a′) =

∫ x

0

uy(ξ, ay, az)

U
dξ −

∫ x

0

uy(ξ, a
′
y, a
′
z)

U
dξ, (55)

∆ζ(x; a, a′) =

∫ x

0

uz(ξ, ay, az)

U
dξ −

∫ x

0

uz(ξ, a
′
y, a
′
z)

U
dξ. (56)

The second moment follows from

Σ2
ϑ(x;H) = σ2

ϑ(0;H) + 2

∫ x

0

(x− ξ)Cuy (ξ, 0, 0) dξ

− 8

H4

∫ H

0

∫ H

0

∫ x

0

(H − αy)(H − αz)(x− ξ)Cuy (ξ, αy, αz) dξ dαy dαz, (57)

Σ2
χ (x;H) = σ2

χ(0;H) + 2

∫ x

0

(x− ξ)Cuz (ξ, 0, 0)dξ

− 8

H4

∫ H

0

∫ H

0

∫ x

0

(H − αy)(H − αz)(x− ξ)Cuz (ξ, αy, αz) dξ dαy dαz, (58)

where Cuy and Cuz denote the covariance functions of the normalized fluctuations
uy/U and uz/U, respectively.

Plume meandering (advection of the plume as a whole) is described by the second
term on the right-hand side in (54) for travel time, and by the third term in (57)
and (58) for transverse displacements. These terms constitute the second moment of
f(T ,Y ; x) and in conjunction with the ensemble mean can be used to hypothesize
the shape of f(T ,Y ; x).

6.2. Computation of Σθθ′ and Σϑϑ′

For the travel time joint p.d.f., fr2, we need to evaluate the cross-covariance term
between two pairs of particles using the travel time differences ∆τ(x; a, a′) and
∆τ′(x; b, b′). From (29) and (53) we have

Σθθ′ =
1

2

1

A2
0

∫
A0

∫
A0

〈
∆τ(x; a, a′)∆τ(x; b, b′)

〉
d(a− a′) d(b− b′)

=
1

2

1

A2
0

∫
A0

∫
A0

1

U4

∫ x

0

∫ x

0

{〈ux(ξ, ay, az)ux(ξ′, by, bz)〉

−〈ux(ξ, a′y, a′z)ux(ξ′, by, bz)〉 − 〈ux(ξ, ay, az)ux(ξ′, b′y, b′z)〉
+〈ux(ξ, a

′

y, a
′

z)ux(ξ
′, b′y, b

′
z)〉} dξ dξ′ d(a− a′) d(b− b′). (59)
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Considering again a planar source of size A0 = H ×H , (59) reduces to

Σθθ′(x;H, α) =
2

U2

∫ x

0

(x− ξ)Cux(ξ, αy, αz) dξ

− 4

U2H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cux(ξ, αy + βy, αz + βz) dξ dβy dβz

− 4

U2H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cux(ξ, αy − βy, αz − βz) dξ dβy dβz, (60)

where α(αy, αz) denotes the separation vector between two particle-pairs and β(βy, βz)
denotes the separation vector between particles within each pair, respectively.

Similarly for transverse displacement, the cross-covariance terms required for eval-
uating the transverse joint p.d.f. follow from

Σϑϑ′(x;H, α) = 2

∫ x

0

(x− ξ)Cuy (ξ, αy, αz) dξ

− 4

H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cuy (ξ, αy + βy, αz + βz) dξ dβy dβz

− 4

H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cuy (ξ, αy − βy, αz − βz) dξ dβy dβz (61)

Σχχ′(x;H, α) = 2

∫ x

0

(x− ξ)Cuz (ξ, αy, αz) dξ

− 4

H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cuz (ξ, αy + βy, αz + βz) dξ dβy dβz

− 4

H4

∫ H

0

∫ H

0

∫ x

0

(H − βy)(H − βz)(x− ξ)Cuz (ξ, αy − βy, αz − βz) dξ dβydβz. (62)

7. Illustration examples
For illustration purposes we consider a two-dimensional aquifer with transport

of non-reactive and reactive solute. In all cases the source is a line of length H at
x = 0 and a control plane (line) is set at x = L; both H and L are normalized with
the log-hydraulic conductivity integral scale, I . The mean solute flux and solute flux
standard deviation are computed as functions of time and transverse displacement at
the control plane. The sampling line, denoted by B, is also normalized with I , and
represents an averaging window at the control plane. We assume complete mixing
within B as is usually the case in practice when sampling contaminants in aquifers.

Taking again advantage of 〈τη〉 = 0, we write the p.d.f.s fr1 and fr2 as

fr1(τ, η; x) = fr1(τ; x) fr1(η; x),

fr2(τ, τ
′, η, η′; x, αy) = fr2(τ, τ

′; x, αy)f
r
2(η, η

′; x, αy).

The mean solute flux defined in (38) is proportional to fr1(τ; x, A0), assumed to
follow a log-normal shape with arithmetic moments fr1(τ; x) = LN[〈τ〉 = x/U, Σ2

θ ],
and to fr1(η; x) = N[0, Σ2

ϑ] which is assumed to follow a Gaussian distribution. The
assumptions of a Gaussian distribution for η and log-normal for τ are consistent with
results from numerical simulations (e.g. Bellin, Saladin & Rinaldo 1992; Cvetkovic,
Cheng & Wen 1996). A Gaussian distribution for transverse particle displacement
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is also consistent with observations in atmospheric turbulent diffusion (e.g. Csanady
1973; Chatwin & Sullivan 1990). For computing the solute flux variance we hy-
pothesize a joint log-normal p.d.f. for fr2(τ, τ

′; x,H, αy) and joint Gaussian p.d.f. for
fr2(η, η

′; x,H, αy), evaluated with two-dimensional forms of (60) and (61). The above
choice of distributions is only for illustrative purposes; other distributions, that are
consistant with numerical simulations or field experiments, could be used as alterna-
tives.

7.1. Non-reactive case

For non-reactive solute injected over a line source of extent H , with ρ0 =const.
[M/L−1], and a sampling window of length B centred at y, the mean solute flux
reduces from (38) to

〈q(t, x, y)〉 =
M

B
fr1(t; x,H)

∫
B

fr1(y
′; x,H) dy′. (63)

The solute flux variance is σ2
q(t, x, y) =

〈
q2
〉
− 〈q〉2 where (40) reduces to〈

q2(t, x, y)
〉

=
M2

H2 B2

∫
H

∫
H

∫
B

∫
B

fr2(t, t; x,H, αy) f
r
2(y
′, y′′; x,H, αy) dy′ dy′′ day da′y

(64)
where αy = |ay − a′y| is a separation between two particle pairs, and M = ρ0 H .

We first analyse relative dispersion for the solute discharge across the entire CP, Q,
obtained from (11) for A → ∞ (or B → ∞); thus only the marginal p.d.f. fr1(t; x,H)
is required.

Figure 3 shows the first two moments of the solute discharge with σ2
k = 0.5 and the

CP set at 20I from the source. Figures 3(a) and 3(b) describe the difference between
the absolute and relative dispersion for the mean solute discharge and the solute
discharge standard deviation, respectively. The two descriptions of the dispersion
process converge for a larger source size with a faster convergence for the first (e.g.
H > 10) than second moment (e.g. H > 20) of solute discharge. This indicates that
the ergodicity in the mean is reached more rapidly than ergodicity in the second
moment of solute discharge. In the limit H → ∞ equations (54) and (60) reduce to
their absolute dispersion results (Cvetkovic et al. 1992). In the limit H → 0, (54) and
(60) approach zero, indicating that the relative dispersion does not exist for a point
source and transport is described as meandering only.

Figure 4 shows the mean and standard deviation of the solute flux as a function
of travel time and transverse displacement at the CP placed at 20I . The plume mean
location at the CP is positioned on the ensemble mean travel time 〈τ〉 and transverse
displacement a0 = 0 to represent the relative spreading due to the velocity fluctuations
on the scale smaller than the plume size. The velocity fluctuations on the scale larger
than plume size contribute to the plume meandering and they are removed from
the relative solute flux formulation. The relative plume spreading displayed on figure
4 provides important information for a certain class of environmental applications,
in particular for the risk assessment where actual concentration fluctuations cause
potential harm to humans, etc. Including the plume meandering in the overall en-
semble would flatten the contaminant breakthrough, reduce the peak (figure 1b), and
consequently would underestimate the potential risk.

The uncertainty in the description of a plume centroid location is a consequence of
our inability to precisely estimate where the plume as a whole will migrate due to the
larger heterogeneity scale present in aquifers; it is of interest for some applications, for
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Figure 3. Comparison between absolute and relative dispersion formulation for integrated
non-reactive solute flux at x = 20I: (a) mean solute flux, (b) solute flux standard deviation.

instance, when determining the total monitoring network size and the total number of
wells needed to detect a migrating plume. Thus, both relative and absolute dispersion
characteristics of subsurface transport are important for some but usually different
objectives and, therefore, should be evaluated separately.

To better grasp features of relative dispersion in two dimensional transport, figure
5 displays the travel time and transverse displacement profiles sliced at the plume
centreline and at the peak travel time, respectively. In addition, three different
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Figure 4. Non-reactive solute flux solution as a space–time process (x = 20I, H = 2, B = 0):
(a) mean, (b) standard deviation.

sampling detection areas are considered. Larger detection areas cause more flat-
ness in the solute flux distribution in the transverse which is particularly emphasized
in the solute flux second moment. For a decreasing sampling size, i.e. B → 0, the
‘point’ detection of the solute flux is obtained, say at the Darcy scale approximately
10−1m. The effects of instrument smoothing are expected to be more pronounced
for higher moments since high fluctuations, which make an increasingly large contri-
bution for larger moments, are smoothed out. Thus, the sampling area B acts as a
moving average window on the solute flux solution for B = 0. Evaluation of solute
flux statistics, subject to a sampling volume, is necessary for proper measurement
conditioning (Andričević 1996).

We also find that the sampling/detection length has a unique scaling effect on the
solute flux variance at the plume centre when expressed as a function of the ratio
between sampling window and source size, i.e. B/H . This behaviour is presented on
figure 5(c) and is independent of the distance to the control plane. The universal
scaling effect on figure 5(c) can be used to evaluate the reduction in the solute flux
second moment as a result of sampling volume.

In aquifers, the concentration measurements are usually performed in-situ using
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well probes or by withdrawal of water by pumping. In either case, and particularly
in the latter, the volume of sampled aquifer is much larger than the pore scale and,
therefore, complete mixing within the detection volume due to the sampling will
occur. This sampling practice in aquifers acts as instrument smoothing and does not
allow detection of possible high solute fluctuations concentrated in the flow paths on
a scale smaller than B. The effect of instrument smoothing is to drastically reduce
the magnitude of solute flux higher-order moments. If additional temporal sampling
time is introduced (e.g. Destouni & Graham 1997), further smoothing would occur.

Although pore-scale dispersion will reduce the concentration fluctuations after
advective transport has developed (i.e. the plume is stretched and distorted creating
more surface area where pore-scale dispersion can occur), the quantification and
verification of its impact on concentration fluctuations from measurements in aquifers
is very difficult. Thus, the influence of pore-scale dispersion, if included in modelling,
usually cannot be supported by measurement in the subsurface; it thus remains
difficult to assess what is the actual pore-scale dispersion effect on the solute transport.
However, a finite sampling area A and the pore-scale dispersion yield similar effects
on concentration fluctuations, namely they both introduce concentration smoothing
and reduce higher-order moments.

7.2. Effect of non-equilibrium sorption

For cases where solute is subject to equilibrium or non-equilibrium mass transfer
reactions between the fluid phase and surrounding material, the form of the time
retention function needs to be specified. If the migrating solute undergoes a sorption-
desorption reaction controlled by first-order kinetics with

ψm = −α (Kd C −N)− k0 C, ψim = α (Kd C −N)− k0 N (65)

the time retention function is (e.g. Cvetkovic & Dagan 1994)

γ(t, τ) = exp[−(αKd + k0)t]δ(t− τ) + α2 Kdτ exp(−αKd τ− αt+ ατ− k0t)

×Ĩ1[α
2 Kd τ(t− τ)]H(t− τ) (66)

where Ĩ1(z) ≡ I1(2z
1/2)/z1/2 with I1 being the modified Bessel function of the first

kind of order one, α is the mass transfer rate, Kd is the distribution coefficient
once equilibrium is reached for reversible mass transfer, H(t − τ) is the Heaviside
step function, and k0 accounts for irreversible mass transfer (degradation in both
mobile and immobile phases, or decay). For α→∞, reversible mass transfer is under
equilibrium conditions, and (66) reduces to γ = e−k0 t δ [t− (1 +Kd) τ].

Using (38) and (40), the first two moments of the solute flux are obtained as

〈q(t, x, y)〉 =
M

B

∫
B

∫ ∞
0

γ(t, τ)fr1(τ; x) fr1(y
′; x) dτ dy′ (67)

and σ2
q(t, x, y) =

〈
q2
〉
− 〈q〉2, where〈

q2(t, x, y)
〉

=
M2

H2B2

∫
H

∫
H

∫
B

∫
B

∫ ∞
0

∫ ∞
0

γ(t, τ)γ(t, τ′)

×fr2(τ, τ′; x,H, αy) fr2(y′, y′′; x,H, αy) dτ dτ′ dy′ dy′′ day da′y (68)

with αy = |ay − a′y|.
Figure 6 shows the solute plume undergoing mass transfer processes with α∗ ≡

αI/U = 0.1 and Kd = 1, displayed in the two-dimensional transport coordinates,
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Figure 6. Reactive solute flux solution as a space–time process at CP = 20I with α∗ = 0.1:
(a) mean, (b) standard deviation.

travel time and transverse displacement at x. The effect of tailing due to the mass
transfer and time retention is apparent. For larger travel time the plume becomes
narrow and may still be present at the CP in measurable quantities. The actual
magnitude of this presence is determined by Kd and α∗ values. The solute flux
standard deviation (figure 6b) shows the development of the bi-modal form of the
transversal standard deviation. During the early (rising) part of the breakthrough,
the mean and standard deviation of the solute flux are of similar magnitude and σq
shows a uni-modal distribution. For the later stage of the breakthrough (recession
part), the solute flux standard deviation has a dual peak structure which is smoothed
out in the high tail values of travel time. This off-centre peak for σq is located around
y/I = 0.6 which corresponds to the highest slope of the mean solute flux distribution.

The effect induced by slow mass transfer (slow compared to the advective transport
time) is displayed on figure 7 for the first two moments of the solute flux as a function
of time and transverse displacement by slicing figure 6 along the plume centreline and
time equal to 20. Since the reaction process is reflected as a time retention mechanism,
the important mass transfer effects can be seen from the solute flux as a function of
time.
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The transition from the non-reactive case to the reactive one is manifested as a
reduction in the solute flux peak and an introduction of the tailing effect. For faster
reactions (larger α∗), the peak is shifted in time and increased while tailing diminishes;
for sufficiently large α∗ (by α∗ > 1), the local equilibrium assumption (LEA) may be
applicable. The contaminant transport solution then behaves as a linear equilibrium
where the velocity, and consequently the travel time, is scaled by the retardation
factor 1 + Kd. This can be seen by comparing the mean solute flux from figure 5
(B = 0) and figure 7 (α∗ = 0.5).

7.3. Correlation structure

In figure 8 we present the two-dimensional solute flux integral correlation measure
P (t∗, y∗; x, B) (22) for H = 2, B = 0. The temporal and transverse lags are presented
dimensionless. In terms of comparing correlation structures in space and time an
appropriate normalization length is required. Commonly we choose the correlation
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scale defined as the distance for the e−1 decrease of the correlation. Only in the case
of a negative exponential type of correlation function is the correlation scale the
same as the integral scale, the latter defined as the integral of the correlation function
normalized with the variance. Figure 8 shows the correlation scale in the transverse
coordinate to be around I and 1.5I for travel time. In words, two solute particles in a
single realization crossing the CP at the same time (t∗ = 0) are correlated within the
distance of I and similarly two solute particles crossing the CP at the same location
(y∗ = 0) will be correlated in time within 1.5I . These two correlation measures may
provide useful guidelines for designing sampling networks in the subsurface. Any
other correlation depending on both temporal and transverse lags can be deduced
from figure 8.

Figure 9 shows a different sensitivity analysis of correlation measures of the solute
flux by keeping one coordinate lag equal to zero, i.e. the correlation measure along
the plume centreline (figure 9a displays P (t∗, 0; x, B)) and transverse cross-section at
t = 〈τ〉 (figure 9b displays P (0, y∗; x, B)). Figure 9(a) depicts the development of the
temporal correlation scale for the CP located at 5I and 20I with a clear increase
of the correlation scale at the larger distance from the source. If, in addition, the
solute undergoes a sorption–desorption reaction, the temporal correlation is further
increased. That transverse correlation scale of the plume, P (0, y∗; x, B), on figure 9(b)
shows an increase in the transverse correlation by considering the sampling detection
(B = 1); however, when sorption–desorption is active, the transverse correlation
scale is reduced compared to ‘point’ detection. The tailing effect (figure 6) causes
a narrow plume which is the reason why the transverse correlation scale on figure
9(b) is reduced. In all cases there is a smooth Gaussian-type correlation structure
for the transverse direction while the temporal correlation has a region of negative
correlation and behaves like a hole-Gaussian-type correlation function.

8. Summary
Relative dispersion of the mass flux for non-reactive and reactive solute is presented

in terms of the first two moments, i.e. mean solute flux and solute flux variance. The
mean solute flux is described as a space–time process where time refers to the solute
flux breakthrough and space refers to the transverse displacement distribution at the
control plane placed perpendicular to the mean flow direction. The statistical moments
for describing the mean solute flux distribution are derived using the statistics of a
single particle pair while moments for the distribution of the solute flux variance are
based on the motion of two particle pairs. Statistics of the solute flux, as a space–time
process, fully describe the evolution of a contaminant plume in heterogeneous aquifers.

The results indicate that the relative dispersion of the solute flux approaches the
absolute dispersion when source size is increased. This convergence is faster in the
mean than in the standard deviation of the solute flux. For a decreasing source size,
the difference between the absolute and relative dispersion formulations increases.
The smoothing effect due to a finite sampling area influences the first two moments of
the solute flux. This influence is more pronounced in the solute flux second-moment
distribution by reducing the peak with enhanced spreading in space and time. The
solute flux solution for contaminants undergoing a sorption reaction shows the effect
of tailing in arrival time with a bi-modal transverse distribution of the solute flux
second moment in the recession stage of the breakthrough.

The integrated correlation structure of the solute flux in (22) has been derived as
an effective, global space–time measure of the migrating plume. When evaluated for a
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fixed time, this correlation describes the probability that two points at the CP are in
the marked fluid and as such is a potentially useful indicator for optimizing spacing
of sampling locations in aquifers. Conversely, when evaluated for a fixed point at the
CP, P describes the temporal correlation of the breakthrough and can be used to
assign the frequency of measurements.

The derived integral-form solution for the solute flux moments neglects the effect of
pore-scale dispersion. Pore-scale dispersion is due to velocity fluctuations on the scale
of the order of say 10−3 m, whereas the solute flux solution is based on the flow field
evaluated from hydraulic data assumed to have been sampled on (or downscaled to)
the Darcy scale, of the order of say 10−1 m. The pore-scale dispersion effect is known
to increase with transport time and affects most the solute flux higher moments. Its
maximum impact is anticipated for point measurements (i.e. for A→ 0) which is ap-
proximately on the Darcy scale (e.g. Graham & McLaughlin 1989; Li & McLaughlin
1991; Kapoor & Gelhar 1994; Zhang & Neuman 1996; Dagan & Fiori 1997). In many
applications, however, samples are taken over finite scales larger than the Darcy scale
(i.e. finite A) such that the actual pore-scale effect is suppressed and difficult to detect
due to the mixing in the sampling volume. In addition, if sampling is over finite time
intervals it can only enhance the mixing in sampling (e.g. Destouni & Graham 1997).

The first-order approximation for the velocity field, distributional assumptions for
τ and η, and an assumption for relating Lagrangian and Eulerian statistics, have been
employed in this analysis for illustrative purposes. Extensive numerical simulations
(e.g. Bellin et al. 1992; Chin & Wang 1992; Cvetkovic et al. 1996) as well as comparison
with field data (Burr, Sudicky & Naff 1994) support distributional assumptions and
indicate that the first-order approximation is robust for σ2

k at least up to 1. In real
applications and for higher σ2

k , numerical simulations can be used for determining
distributions for τ and η as well as for computing their relevant statistics.

Knowledge of first two moments of the solute flux (or discharge) is often of direct
practical interest, for instance, in risk management, remedial decisions, etc. How-
ever, the sampling practice in aquifers is most frequently in terms of flux-averaged
concentration that is defined as Cf = q/Vn [ML−3] and hence directly related to
the solute flux. The groundwater flux at a point of measurement is proportional
to Vn and thereby also a random process; its statistics need to be combined with
solute flux statistics to yield the flux-averaged concentration statistics. For example,
〈Cf〉 = (1/n)

∫
(q/V )f(q, V ) dq dV defines the mean flux-averaged concentration (as-

suming constant effective porosity) where f(q, V ) denotes the joint p.d.f. between the
solute flux and groundwater velocity for a specific sampling scale. Thus, the solute flux
statistics provide a basis for evaluating the statistics of the flux-averaged concentra-
tion. The ability of the proposed framework to account for a finite sampling scale (i.e.
A > 0) is crucial for conversion of the solute flux into the flux-averaged concentration
data.

The authors wish to thank two anonymous reviewers, as well as Sten Berglund at
the Royal Institute of Technology in Stockholm, and Aldo Fiori at Terza Universita’
di Roma, for their helpful comments and suggestions in the final preparation of the
manuscript.

Appendix
Let f(X,Y ; a) denote a joint p.d.f. of X and Y , which is dependent on a parameter

a. Let f̂(p, q; a) denote the moment generating function of f that has been obtained as
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an appropriate transform of f where p and q are transform variables. The moments
of f are computed as

µmn ≡
∫ ∫

Xm Y n f(X,Y ; a) dX dY = (−1)m+n ∂
m+nf̂(p, q; a)

∂pm ∂qn
(A 1)

for p = q = 0.
Let F(X,Y ) be defined as

F(X,Y ) ≡ [f] =
1

A

∫
A

f(X,Y ; a) da, (A 2)

where a ∈ A; thus F is also a p.d.f. We wish to compute the moments of F as
functions of the moments of f.

Applying the linear integral operator [ ] on both sides of (A 1) yields

[µmn] ≡
∫ ∫

Xm Y n F(X,Y ) dX dY = (−1)m+n ∂
m+nF̂(p, q)

∂pm ∂qn
(A 3)

since F̂ = [f̂]. Thus, the moments of F ≡ [f] are equal to the moments of f on which
[ ] is applied. If the averaged joint moments are zero, we have F(X,Y ) = F(X)F(Y ).
The above can be generalized to three or more random variables.
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